28,265 research outputs found

    Theoretical description of a DNA-linked nanoparticle self-assembly

    Full text link
    Nanoparticles tethered with DNA strands are promising building blocks for bottom-up nanotechnology, and a theoretical understanding is important for future development. Here we build on approaches developed in polymer physics to provide theoretical descriptions for the equilibrium clustering and dynamics, as well as the self-assembly kinetics of DNA-linked nanoparticles. Striking agreement is observed between the theory and molecular modeling of DNA tethered nanoparticles.Comment: Accepted for publication in Physical Review Letter

    Polyvinyl alcohol cross-linked with two aldehydes

    Get PDF
    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article

    Baryon resonances and hadronic interactions in a finite volume

    Get PDF
    In a finite volume, resonances and multi-hadron states are identified by discrete energy levels. When comparing the results of lattice QCD calculations to scattering experiments, it is important to have a way of associating the energy spectrum of the finite-volume lattice with the asymptotic behaviour of the S-matrix. A new technique for comparing energy eigenvalues with scattering phase shifts is introduced, which involves the construction of an exactly solvable matrix Hamiltonian model. The model framework is applied to the case of Δ→Nπ\Delta\rightarrow N\pi decay, but is easily generalized to include multi-channel scattering. Extracting resonance parameters involves matching the energy spectrum of the model to that of a lattice QCD calculation. The resulting fit parameters are then used to generate phase shifts. Using a sample set of pseudodata, it is found that the extraction of the resonance position is stable with respect to volume for a variety of regularization schemes, and compares favorably with the well-known Luescher method. The model-dependence of the result is briefly investigated.Comment: 7 pages, 3 figures. Talk presented at the 30th International Symposium on Lattice Field Theory (Lattice 2012), June 24-29, 2012, Cairns, Australi

    Sagnac Interferometer Enhanced Particle Tracking in Optical Tweezers

    Full text link
    A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enhancement factor increases asymptotically as the interferometer visibility approaches 100%, but is capped at a maximum given by the ratio of the trapping field intensity to the detector saturation threshold. For an achievable visibility of 99%, the signal-to-noise ratio is enhanced by a factor of 200, and the minimum trackable particle size is 2.4 times smaller than without the interferometer

    Unitarity and the Hilbert space of quantum gravity

    Full text link
    Under the premises that physics is unitary and black hole evaporation is complete (no remnants, no topology change), there must exist a one-to-one correspondence between states on future null and timelike infinity and on any earlier spacelike Cauchy surface (e.g., slices preceding the formation of the hole). We show that these requirements exclude a large set of semiclassical spacetime configurations from the Hilbert space of quantum gravity. In particular, the highest entropy configurations, which account for almost all of the volume of semiclassical phase space, would not have quantum counterparts, i.e. would not correspond to allowed states in a quantum theory of gravity.Comment: 7 pages, 3 figures, revtex; minor changes in v2 (version published in Class. Quant. Grav.

    STEPS - an approach for human mobility modeling

    Get PDF
    In this paper we introduce Spatio-TEmporal Parametric Stepping (STEPS) - a simple parametric mobility model which can cover a large spectrum of human mobility patterns. STEPS makes abstraction of spatio-temporal preferences in human mobility by using a power law to rule the nodes movement. Nodes in STEPS have preferential attachment to favorite locations where they spend most of their time. Via simulations, we show that STEPS is able, not only to express the peer to peer properties such as inter-ontact/contact time and to reflect accurately realistic routing performance, but also to express the structural properties of the underlying interaction graph such as small-world phenomenon. Moreover, STEPS is easy to implement, exible to configure and also theoretically tractable

    Thermoelasticity of Fe2+-bearing bridgmanite

    Full text link
    We present LDA+U calculations of high temperature elastic properties of bridgmanite with composition (Mg(1−x)_{(1-x)}Fex2+_{x}^{2+})SiO3_3 for 0≤x≤0.1250\le{x}\le0.125. Results of elastic moduli and acoustic velocities for the Mg-end member (x=0) agree very well with the latest high pressure and high temperature experimental measurements. In the iron-bearing system, we focus particularly on the change in thermoelastic parameters across the state change that occurs in ferrous iron above ∼\sim30 GPa, often attributed to a high-spin (HS) to intermediate spin (IS) crossover but explained by first principles calculations as a lateral displacement of substitutional iron in the perovskite cage. We show that the measured effect of this change on the equation of state of this system can be explained by the lateral displacement of substitutional iron, not by the HS to IS crossover. The calculated elastic properties of (Mg0.875_{0.875}Fe0.1252+_{0.125}^{2+})SiO3_3 along an adiabatic mantle geotherm, somewhat overestimate longitudinal velocities but produce densities and shear velocities quite consistent with Preliminary Reference Earth Model data throughout most of the lower mantle.Comment: Accepted for Geophysical Research Letters (DOI: 10.1002/2014GL062888
    • …
    corecore